登录
注册
您所在的位置:首页>>报告>>报告详情

A 20-Year Community Roadmap for Artificial Intelligence Research ...

未来20年美国人工智能研究团体路线图

【作       者】:

{{d.作者}}

【机       构】: 计算研究协会计算社区联盟
【承研机构】:

【英文机构】: Computing Research Association’s Computing Community Consortium
【原文地址】: https://cra.org/ccc/visioning/visioning-activities/2018-activities/artificial-intelligence-roadmap/
【发表时间】:

2019-05-13

摘要

The Computing Community Consortium (CCC) requests comments by May 28, 2019 on a draft of A 20-Year Community Roadmap for AI Research in the US. Learn more about the roadmapping process below.

The 20-year AI Research Roadmap that was produced by this community effort includes the following specific recommendations:

I — Create and Operate a National AI Infrastructure to serve academia, industry, and government through four interlocking capabilities:

Open AI platforms and resources: a vast interlinked distributed collection of “AI-ready” resources (curated high-quality datasets, software libraries, knowledge repositories, instrumented homes and hospitals, robotics environments, cloud-scale computing services, etc.) contributed by and available to the academic research community, as well as to industry and government. Recent major innovations from companies demonstrate that AI breakthroughs require large-scale hardware investments and open-source software infrastructures, both of which require substantial ongoing investments.

Sustained community-driven AI challenges: organizational structures that coordinate the formulation of grand-challenge problems by AI and domain experts to drive research in key areas, building upon—and adding to—the shared resources in the Open AI Platforms and Facilities.

National AI Research Centers: physical and virtual facilities that bring together Faculty Fellows from a range of academic institutions and Industry Fellows from industry and government in multi-year funded projects focused on pivotal areas of long-term AI research.

Mission-Driven AI Laboratories: living laboratories that provide sustained infrastructure, facilities, and human resources to support the Open AI Platforms and the AI Challenges, and work closely with the National AI Research Centers to integrate results to address critical AI challenges in vertical sectors of public interest such as health, education, policy, ethics, and science.

II — Re-conceptualize and Train an All-Encompassing AI Workforce, building upon the elements of the National AI Infrastructure listed above to create:

Development of AI Curricula at All Levels: guidelines should be developed for curricula that encourage early and ongoing interest in and understanding of AI, beginning in K-12 and extending through graduate courses and professional programs.

Recruitment and Retention Programs for Advanced AI Degrees: including grants for talented students to obtain advanced graduate degrees, retention programs for doctoral-level researchers, and additional resources to support and enfranchise AI teaching faculty.

Engaging Underrepresented and Underprivileged Groups: programs to bring the best talent into the AI research effort.

Incentivizing Emerging Interdisciplinary AI Areas: initiatives to encourage students and the research community to work in interdisciplinary AI studies—e.g., AI-related policy and law, AI safety engineering, as well as analysis of the impact of AI on society—will ensure a workforce and a research ecosystem that understands the full context for AI solutions.

Training Highly Skilled AI Engineers and Technicians: to support and build upon the Open AI Platform to grow the AI pipeline through community colleges, workforce retraining programs, certificate programs, and online degrees.

III – Core Programs for AI Research. The new resources and initiatives outlined above cannot come at the expense of existing programs for funding theoretical and applied AI. These existing programs—which provide well-established, broad-based support for research progress, for training young researchers, for integrating AI research and education, and for nucleating novel interdisciplinary collaborations—are critical complements to the broader initiatives described in this Roadmap, and they too will require expanded support.

标签: {{b}}
展开